EFFECT OF A NUCLEOPHILIC SUBSTITUENT ON THE STEREO-CHEMISTRY OF THE KOENIGS-KNORR REACTION. STEREOSPECIFIC, SYNTHESIS OF SOME α - AND β -LINKED DISACCHARIDES OF L-FUCOSE

HAROLD M. FLOWERS

Department of Biophysics, The Weizmann Institute of Science, Rehovoth (Israel) (Received May 28th, 1978; accepted for publication in revised form, November 30th, 1978)

ABSTRACT

Reaction of 2-O-benzyl-3,4-di-O-p-nitrobenzoyl- α -L-fucopyranosyl bromide with suitably protected benzyl α -L-fucopyranoside, methyl α - and β -L-fucopyranosides, and methyl α - and β -D-galactopyranosides afforded 2-O- α -L-linked disaccharides stereospecifically. Reaction of the same nucleophilic derivatives with 2,3,4-tri-O-acetyl- α -L-fucopyranosyl bromide generally led to the corresponding β -L-linked disaccharides. However, methyl 6-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranoside gave an appreciable proportion of α -L-disaccharide, whereas benzyl β -L-fuco- and β -D-galacto-pyranosides gave α -L-linked disaccharides stereospecifically.

INTRODUCTION

The Koenigs-Knorr reaction between peracetylglycopyranosyl bromides and protected saccharides in the presence of mercuric cyanide in nitromethane-benzene generally leads to β -D- or β -L-linked disaccharides. However, a number of examples have been described in which these conditions, or rather more polar media, have afforded considerable proportions of α -linked disaccharides¹. In the majority of these cases²⁻⁵, but not in all^{6,7}, glycosylation has been at OH-2 of a protected derivative, and the adjacent anomeric centre in the nucleophilic intermediate had either the α or β configuration. Stereospecific syntheses of α -linked disaccharides generally involve protected glycosyl halides that are less accessible than the peracetylglycopyranosyl bromides, and thus there might be considerable practical value in ascertaining conditions under which they can be prepared directly from these bromides.

Earlier work in this laboratory has demonstrated the stereospecific synthesis of β -linked disaccharides by treatment of several α -D-glycopyranosyl bromides with various nucleophilic intermediates in the presence of mercuric cyanide⁸. β -L-Disaccharides had previously been prepared from 2,3,4-tri-O-acetyl- α -L-fucopyranosyl bromide in a similar fashion^{9,10}. The configuration of the compounds obtained was in contrast to that of the 2-O- α -L-linked disaccharides previously obtained by treatment of the same fucosyl bromide with a suitably protected benzyl β -L-fucopyranoside¹¹

and β -D-galactopyranoside^{8,12}. The question may therefore be raised as to whether the structure of the nucleophilic intermediate or the site of substitution in the pyranose ring may have an effect on the configuration of the product of the Koenigs-Knorr reaction. Thus, suitably protected derivatives of L-fucose and D-galactose having OH-2 free for reaction and C-1 either in α - or β -configuration were prepared, and the effect of this configuration on the reaction at the vicinal OH-2 was investigated.

RESULTS AND DISCUSSION

Benzyl α -L-fucopyranoside (1), prepared by glycosylation of benzyl alcohol in the presence of an acidic resin, was acetonated in quantitative yield with 2,2-dimethoxypropane and p-toluenesulfonic acid to syrupy benzyl 3,4-O-isopropylidene- α -L-fucopyranoside (4). Methyl 6-O-benzoyl-3,4-O-isopropylidene- α -D-galactopyranoside (9) and - β -D-galactopyranoside¹³ (10) were prepared by selective benzoylation of methyl 3,4-O-isopropylidene- α - and β -D-galactopyranoside^{14,15}.

A series of disaccharides were synthesized by condensation of benzyl 3,4-Oisopropylidene-β-L-fucopyranoside¹¹ (5), methyl 3,4-O-isopropylidene-α-L-fucopyranoside¹⁶ (6) and -β-L-fucopyranoside¹⁷ (7), methyl 6-O-benzyl-3,4-O-isopropylideneα-D-galactopyranoside 18 (8), and 9 and 10 with 2,3,4-tri-O-acetyl-α-L-fucopyranosyl bromide¹¹ (2) and 2-O-benzyl-3,4-di-O-p-nitrobenzoyl-α-L-fucopyranosyl bromide¹⁹ (3), respectively, in nitromethane-benzene solution in the presence of mercuric cyanide under essentially identical conditions. The reaction was quite rapid, several hours at room temperature being sufficient, and the yields were excellent. In the previous synthesis 11 of the α -linked disaccharide 16, rather harsh conditions of temperature and prolonged reaction times were employed. In the present work, it was found that a somewhat better yield resulted after reaction for a shorter time at room temperature, but the configuration of the product was unaffected. Similarly, prolonged reaction at a higher temperature of 4 and 2 afforded the β -linked disaccharide 11 stereospecifically, but in rather reduced yield. The intermediate and final products were characterized, and the optical rotations and p.m.r. spectra compared. In addition, the gas-liquid chromatograms of some of the products were examined. Comparison of the optical rotations, and spectral and chromatographic properties of the pure, crystalline intermediate and final products with those of the crude materials (separated from other impurities by chromatography or solvent extractions without crystallization) gave an indication of the steric course of the condensation reaction. It was found that bromide 3 led to α-linked disaccharides irrespectively of the structure of the nucleophilic intermediate. This result is in agreement with previous findings, in which use of this bromide had always afforded α-linked disaccharides stereospecificallv19,20

Bromide 2 generally gave β -linked disaccharides with high stereoselectivity. Thus, 4 was converted into benzyl 2-O- β -L-fucopyranosyl- α -L-fucopyranosyl-L-fucopyranosyl-L-fucopyranosyl- α -D-galactopyranoside (30) exclusively. These results are in contrast to the

reaction of 2 with the β -L-fucopyranoside 5, in which the α -linked disaccharide 17 was obtained exclusively ¹¹. A considerable proportion ($\sim 40\%$) of α -linked disaccharide was also formed in the reaction of 2 with the methyl β -D-galactopyranoside derivative 10

Complex equilibria are considered to be present in the reaction of peracetyl-glycopyranosyl halides with nucleophilic reagents, and the predominating course of reaction may depend on the polarity of the medium, the presence of bromide ions, and the possibility of participation of the 2-O-acetyl substituent^{1,21}. The reactive entity may well differ, for example, in acetonitrile and in the less polar 1:1 benzene-nitromethane mixture. Furthermore, the addition of mercuric bromide in molar proportions^{2,4,5} would facilitate the formation of the more reactive β -halide which could react via a β -ion-pair or a structure that is shielded at the " β -side" of C-1 to form α disaccharides. On the other hand, conditions favoring participation of the 2-O-acetyl group would facilitate the formation of β -disaccharide.

The possible influence of substituents on vicinal carbon atoms in the nucleophilic intermediates, especially at the anomeric center, in the course of reaction of OH-2 with peracetylglycopyranosyl halides was indicated by the rather large number of 2-0- α -linked disaccharides resulting from this reaction. No systematic studies have been performed on the effect of the orientation of this C-1 substituent. The different configurations resulting from the reaction of the benzyl α -and β -L-fucopyranosides described in this paper and the α -orientation of the disaccharides obtained previously from benzyl β -D-galactopyranoside are rather striking. It is not possible, at present, to distinguish between steric and polar effects of the benzyl group, which lead to a fine differentiation between the α and β configurations of the products.

EXPERIMENTAL

General methods. — See ref. 22. P.m.r. spectra were recorded either with a Varian A-60 n.m.r. (60 MHz) or a Bruker HFX-10 n.m.r. (90 MHz) spectrometer. The solvent employed, unless otherwise specified, was chloroform-d. The following solvent systems were used for chromatography (all v/v): (A) 4:1 benzene-methanol; (B) 4:1 benzene-ether; (C) 14:14:1 benzene-ether-methanol; (D) 65:15:2 chloroform-methanol-water; (E) 7:1:2 1-propanol-ethyl acetate-water; (F) 3:1:1 1-butanol-pyridine-water; (F) 4:1:5 1-butanol-acetic acid-water; and (F) 6:4:1 chloroform-methanol-water.

Glycosylation reactions. — A solution of the nucleophilic intermediate was dissolved in 1:1 (v/v) nitromethane-benzene (~ 60 ml/g) and $\sim 25\%$ of the solvent was removed by evaporation. The solution was cooled to room temperature (calcium chloride seal), and mercuric cyanide (1.5 mol) was added with stirring, followed by the appropriate bromide (1.5 mol) in 3-4 portions over 3-4 h, each addition being made after complete conversion of the bromide was shown by t.l.c. After the final addition of bromide, stirring was continued for an additional 4 h, and the mixture was processed by dilution with benzene, washing the organic layer with saturated sodium

hydrogencarbonate solution, drying, and evaporation in vacuo. The crude product was directly deacylated.

Deacylations. — A solution of the aforementioned product, either in methanol or in 1:2 (v/v) chloroform-methanol (chloroform being added to facilitate solution in the case of products resulting from 3), containing $\sim 20\%$ of the calculated quantity of sodium methoxide, was kept at room temperature until t.l.c. revealed complete deacylation. The solvent was evaporated in vacuo.

Deacetalation. — A solution of the acetal in 1:1 (v/v) 1,4-dioxane-1% aqueous sulfuric acid (10 ml reagent/g of compound) was kept for 18-40 h at room temperature, completion of the reaction being monitored by t.l.c. There was no evidence for hydrolysis of glycosidic linkages. The solution was then neutralized by the addition of excess barium carbonate, the filtrate evaporated, and the residue processed further as required.

Catalytic hydrogenolysis. — Debenzylation was achieved by treatment of a solution of the compound in 90% ethanol, in the presence of 10% palladium-charcoal, with hydrogen at 3 atm for 18-40 h at room temperature. (It was found that benzyl α -L-fucopyranosides were more resistant to hydrogenolysis than were the corresponding β -L-glycosides, so that longer reaction times were necessary to ensure their complete reduction). After removal of the catalyst by filtration, the solution was evaporated in vacuo, and the residue either purified by chromatography or directly crystallized.

Benzyl α-L-fucopyranoside (1). — A mixture of L-fucose (10 g) and Dowex 50 (H⁺, 5 g) in benzyl alcohol (75 ml) was stirred for 4 h at 80°. After filtration and evaporation of the solution, a syrup was obtained that was purified by chromatography. Solvent A eluted fractions that crystallized from ethanol (5.0 g, 32%), m.p. $161-163^{\circ}$, [α]_D²⁵ -152° (c 1.19, water); n.m.r. (90 MHz, Me₂SO): δ 1.09, 1.17, (3 H, C-Me), 4.38, 4.52, 4.60, and 4.75 (2 H, Bzl), 4.77 (S, 1 H, anomeric H), and 7.25-7.42 (5 H, Ph).

Anal. Calc. for C₁₃H₁₈O₅: C, 61.40; H, 7.14. Found: C, 61.74; H, 7.42.

Benzyl 3,4-O-isopropylidene- α -L-fucopyranoside (4). — A solution of 1 (2.54 g) in dry N,N-dimethylformamide (50 ml) containing 2,2-dimethoxypropane (5 ml) and p-toluenesulfonic acid (50 mg) was stirred for 2 h at room temperature. T.l.c. (B) showed a single product with complete disappearance of 1. Neutralization with IR 45 (OH⁻) anion-exchange resin, filtration, and evaporation of the solution gave an oil (2.97 g, 98%), $[\alpha]_D^{25}$ —125.8° (c 3.67, chloroform); the n.m.r. spectrum showed the expected absorptions: δ 4.84 (J 3 Hz, 1 H, anomeric).

Anal. Calc. for C₁₆H₂₂O₅: C, 65.30; H, 7.48. Found: C, 65.12; H, 7.29.

Benzyl 2-O-β-L-fucopyranosyl-α-L-fucopyranoside (11). — Reaction of 4 (1.2 g) with 2,3,4-tri-O-acetyl-α-L-fucopyranosyl bromide¹¹ (2) in 1:1 (v/v) nitromethane-benzene in the presence of mercuric cyanide, followed by the usual processing and catalytic deacetylation, gave an oil (1.6 g, 89%), $[\alpha]_D^{25}$ —96.0° (c 2.33, chloroform); n.m.r. (90 MHz, Me₂ SO): δ 1.16–1.50 (12 H) and 4.95 (d, 1 H, J 3 Hz, anomeric), no peak in the δ 5–5.5 region expected from an α-linked disaccharide.

Deacetalation required 24 h at room temperature and, after neutralization with

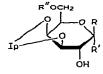
barium carbonate, a white crystalline solid was obtained (1.32 g, 81%); n.m.r. data (90 MHz, Me₂SO): δ 4.53 (d, 1 H, J 7 Hz, β -glycoside), 4.95 (d, 1 H, J 3 Hz, α -glycoside); m.p. 181–183° (from ethanol) [α]₂²⁵ –140° (c 0.69, methanol).

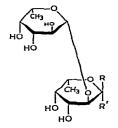
Anal. Calc. for $C_{19}H_{28}O_9$: C, 56.99; H, 7.05. Found: C, 56.80; H, 7.12. 2-O- β -L-Fucopyranose-L-fucose (12). — Hydrogenolysis of 11 (0.50 g) for 2 days gave a single product that slowly crystallized from ethanol (0.35 g, 89%), m.p. 152–154°, $[\alpha]_D^{25}$ —58.6 \rightarrow —50.2° (after 20 h, c 0.90, water).

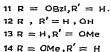
Anal. Calc. for C₁₂H₂₂O₉: C, 46.45; H, 7.15. Found: C, 46.36; H, 7.05.

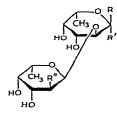
Benzyl 2-O-(2-O-benzyl-a-L-fucopyranosyl)-3,4-O-isopropylidene-a-L-fucopyranoside (23). — Reaction of 4 (0.88 g) and 2-O-benzyl-3,4-di-O-(p-nitrobenzoyl)- α -L-fucopyranosyl bromide¹⁹ (3), followed by catalytic deacylation and purification by silica gel chromatography with solvent C as eluent, gave 23 as a crystalline solid (1.20 g, 75%), $[\alpha]_D^{25}$ —189° (c 0.81, chloroform). A portion of this material was recrystallized from ethanol, m.p. 143–145°, $[\alpha]_D^{25}$ —218° (c 1.14, chloroform).

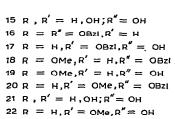
Anal. Calc. for C₂₉H₃₈O₉: C, 65.64; H, 7.22. Found: C, 65.82; H, 7.29.


Benzyl 2-O-(2-O-benzyl- α -L-fucopyranosyl)- α -L-fucopyranoside (16). — A portion of 23 that had not been chromatographed and recrystallized was deacetalated. The solution obtained after neutralization with barium carbonate was concentrated to

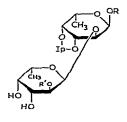



1 R = OBzi, R' = R" = H
2 R =
$$\text{Gr}$$
, R' = R" = Ac
3 R = Gr , R' = Bzi, R" = OCC₆H₄NO₂(p)




$$4R = OBzI, R' = H$$

 $5R = H, R' = OBzI$
 $6R = OMe, R' = H$
 $7R = H, R' = OMe$



23
$$R = R' = BzI$$

24 $R = Me_1R' = BzI$

25
$$R^1 = H, R^2 = OMe, R^3 = R^4 = BzI$$

26 $R^1 = R^3 = R^4 = H, R^2 = OMe$
27 $R^1 = R^3 = H, R^2 = OMe, R^4 = OBzI$
28 $R^1 = OMe, R^2 = R^3 = R^4 = H$

remove most of the 1,4-dioxane and extracted with chloroform to remove methyl p-nitrobenzoate resulting from the catalytic deacylation. The solution was evaporated to a syrup that was dissolved in solvent D and chromatographed to give a crystalline solid (1.0 g, 60% from 4), $[\alpha]_D^{25} - 178^{\circ}$ (c 0.80, methanol); after recrystallization from ethanol, m.p. 186-188°, $[\alpha]_D^{25} - 186^{\circ}$ (c 0.77, methanol).

Anal. Calc. for $C_{26}H_{34}O_9$: C, 63.66; H, 6.99. Found: C, 63.83; H, 6.99.

2-O-α-L-Fucopyranosyl-L-fucose (21). — Hydrogenolysis of 16 (150 mg) for 2 days, followed by filtration and evaporation of the solvent, afforded 115 mg (97%) of a syrup that slowly crystallized from ethanol, m.p. 193–195°, $[\alpha]_D^{25}$ —168.5° (c 0.78, water); lit.¹¹ m.p. 189–192°, $[\alpha]_D$ —163°). The product was identical with an authentic specimen of 2-O-α-L-fucopyranosyl-L-fucose on t.l.c. (D and E) and on paper chromatography (F and G).

Methyl 2-O-β-L-fucopyranosyl-α-L-fucopyranoside (13). — Reaction of methyl 3,4-O-isopropylidene-α-L-fucopyranoside ¹⁶ (6), 0.60 g) with 2, followed by catalytic deacetylation, afforded a syrup (0.80 g, 80%), $[\alpha]_D^{25}$ —87.6° (c 2.04, chloroform). Removal of the isopropylidene group of a part of this product (0.70 g) gave 13 as a crystalline solid (0.40 g, 51%); g.l.c. of the per(trimethylsilyl) ether of this material showed two peaks, $T_{sucrose}$ 0.52 (96%) and 0.56 (4%). After recrystallization from ethanol the m.p. was 236–238°, $[\alpha]_D^{25}$ —88.9° (c 0.90, methanoi) and a single peak was obtained on g.l.c. of the per(trimethylsilyl) ether, $T_{sucrose}$ 0.52; n.m.r. (90 MHz, Me₂SO): δ 1.05 and 1.15 (6 H, C-Me), 3.21 (3 H, OCH₃), 4.20 (d, 1 H, J 7Hz, β-glycoside), and 4.93 (s, 1 H, α-glycoside).

Anal. Calc. for C₁₃H₂₄O₉: C, 48.18; H, 7.46. Found: C, 48.08; H, 7.56.

Methyl 2-O-(2-O-benzyl- α -L-fucopyranosyl)-3,4-O-isopropylidene- α -L-fucopyranoside (24). — Reaction of 6 (1.10 g) with 3, followed by catalytic deacylation and separation from methyl p-nitrobenzoate by silica gel chromatography, gave a crystal-line solid (1.70 g, 74%), m.p. 155–157°, $[\alpha]_D^{25}$ —216° (c 0.79, chloroform); n.m.r.: δ 1.22–1.55 (12 H), 3.45 (3 H, OMe), 4.86 (d, 1 H, J 3 Hz, α -glycoside), 5.14 (d, 1 H, J 3 Hz, α -glycoside), and 7.47 (5 H, Ph).

Anal. Calc. for C₂₃H₃₄O₉: C, 61.01; H, 7.60. Found: C, 60.78; H, 7.54.

Methyl 2-O-(2-O-benzyl-α-L-fucopyranosyl-α-L-fucopyranoside (18). — The isopropylidene group of a portion of 24 (130 mg) was split off, and the product crystallized from ethanol (105 mg, 89%), m.p. 192–194°, $[\alpha]_D^{25}$ —201.2° (c 1.03, methanol); n.m.r. (90 MHz, Me₂SO): δ 3.20 (3 H, OMe), 4.77 (s, 1 H,α-glycoside), 5.01 (d, 1 H, J 2.5 Hz, α-glycoside), and 7.33 (5 H, Ph).

Anal. Calc. for C₂₀H₃₀O₆: C, 57.97; H, 7.30. Found: C, 58.25; H, 7.48.

A sample of crude 24, isolated after the glycosylation and catalytic deacylation reactions, was partially hydrolyzed without previous chromatographic purification. The product was purified by chromatography in solvent D to give 0.80 g of a crystalline solid having an n.m.r. spectrum identical with that of authentic 18. On recrystallization from ethanol, the product (0.60 g) had m.p. 192–194°, $[\alpha]_D^{25}$ —200° (c 0.77, methanol), and the mother liquors, on evaporation, gave a crystalline solid, $[\alpha]_D^{25}$ —196° (c 0.78, methanol).

Methyl 2-O-a-L-fucopyranosyl-a-L-fucopyranoside (19). — Hydrogenolysis of 18 (130 mg) overnight afforded 95 mg (93%) of a solid that was recrystallized from ethanol, m.p. 190–192°, $[\alpha]_D^{25}$ —227° (c 0.57, methanol); a single peak, $T_{sucrose}$ 0.56, was obtained on g.l.c. of the per(trimethylsilyl) ether.

Anal. Calc. for C₁₃H₂₄O₉: C, 48.14; H, 7.46. Found: C, 48.04; H, 7.58.

Methyl 2-O-(2-O-benzyl-a-L-fucopyranosyl)-β-L-fucopyranoside (20). — Reaction of methyl 3,4-O-isopropylidene-β-L-fucopyranoside ¹⁷ (7, 0.70 g) with 3, followed by catalytic deacylation, removal of the isopropylidene group and chromatography gave crystalline 20 (0.60 g, 70%); recrystallization from 98% ethanol gave 0.50 g, m.p. $193-195^{\circ}$, [α]_D²⁵ -100° (c 0.50, methanol); n.m.r. (90 MHz, Me₂SO): δ 5.03 (d, 1 H, J 3 Hz), assigned to the α-disaccharide H.

Anal. Calc. for C₂₀H₃₀O₉: C, 57.96; H, 7.30. Found: C, 57.80; H. 7.25.

Methyl 2-O- α -L-fucopyranosyl- β -L-fucopyranoside (22). — Catalytic hydrogenolysis of 20 gave a product that crystallized from 98% ethanol, m.p. 210–212°, $[\alpha]_D^{25}$ —91.4° (c 0.70, methanol); g.l.c. of the per(trimethylsilyl) ether gave a single peak, $T_{sucrose}$ 0.62.

Anal. Calc. for C₁₃H₂₄O₉: C, 48.14; H, 7.46. Found: C, 48.01; H, 7.25.

Methyl 2-O-β-L-fucopyranosyl-β-L-fucopyranoside (14). — Reaction of 7 (1.09 g) with 2, followed by catalytic deacylation and removal of the isopropylidene group gave 0.92 g (88%), $[\alpha]_D^{25} + 1.2^\circ$ (c 0.86, methanol); on recrystallization from 98% ethanol (yield 0.82 g), m.p. 188–190°, $[\alpha]_D^{25} - 1.2^\circ$ (c 1.0, methanol); n.m.r. (90 MHz, Me₂SO): δ 1.23 and 1.30 (6H, C-Me), 3.54 (3 H, OMe), 4.40 (d, 1H, J 7 Hz), and 4.60 (d,1H, J 7 Hz). G.l.c. of the per(trimethylsilyl) ether of 14, either before or after recrystallization from 98% ethanol; gave a single peak, $T_{sucrose}$ 0.50. Furthermore, 14 and 22 were clearly separated in t.l.c. in solvent D. No indication of the presence of any 22 in crude 14 was observed (R_{22} : R_{14} 0.9).

Anal. Calc. for $C_{13}H_{24}O_9$: C, 48.14; H, 7.46. Found: C, 48.02; H, 7.33.

Methyl 6-O-benzyl-2-O-(2-O-benzyl- α -L-fucopyranosyl)- α -D-galactopyranoside (25). —Reaction of methyl 6-O-benzyl-3,4-O-isopropylidene- α -D-galactopyranoside (8, 1.5 g) with 3 followed by catalytic deacylation and chromatography gave a syrup (1.9 g,

73%), $[\alpha]_D^{25}$ —23.0° (c 1.80, chloroform); n.m.r.: δ 1.35–1.55(9 H), 3.50(3 H, OMe), 4.95 (d, 1 H, J 3 Hz), 5.37 (d, 1 H, J 3 Hz), and 7.52 (10 H, Ph). Removal of the isopropylidene group of 1.6 g of this product gave a syrup (1.3 g, 90%), a portion of which crystallized from water, m.p. 137–139°, $[\alpha]_D^{25}$ —18.0° (c 0.86, methanol).

Anal. Calc. for C₂₇H₃₆O₁₀: C, 62.29; H, 6.97. Found: C, 62.15; H, 7.01.

Methyl 2-O-α-L-fucopyranosyl-α-D-galactopyranoside (26). — A portion (1.0 g) of the crude syrup just described (before crystallization of 25) was directly hydrogenolyzed, and small amounts of impurity were removed by chromatography and elution with solvent H (yield 0.60 g, 92%), $[\alpha]_D^{25} + 1.3^\circ$ (c 1.12, water); n.m.r. (90 MHz, D₂O): δ 1.12 (d, 3 H, J7 Hz, C-Me), 3/42(3 H, OMe), 4.98 (d, 1 H, J 3 Hz, α-D-galactopyranosyl H), 5.09 (d, 1 H, J 3 Hz, α-L-fucopyranosyl H), no signal between 4.30 and 4.76. On crystallization from ethanol, m.p. 202–204°, $[\alpha]_D^{25} + 0.9^\circ$ (c 1.15, water); n.m.r. spectrum unchanged after crystallization.

Anal. Calc. for C₁₃H₂₄O₁₀: C, 45.88; H, 7.11. Found: C, 45.60; H, 7.25.

Methyl 2-O-β-L-fucopyranosyl-α-D-galactopyranoside (30). — (a) From 8. After reaction of 8 (0.60 g) with 2, followed by catalytic deacetylation of the product and purification by chromatography, a syrup was obtained (0.70 g 80%), $[\alpha]_D^{25} + 35.8^{\circ}$ (c 0.74, chloroform); n.m.r.: δ 1.30–1.55 (9 H), 3.54 (3 H, OMe), 4.95 (d, 1 H, J 3 Hz, α-galactopyranosyl H), and 7.50 (5 H, Ph).

After removal of the isopropylidene group, followed directly by hydrogenolysis, a solid was obtained (0.50 g, 80% from 8), $[\alpha]_D^{25} + 109^\circ$ (c 0.89, water); n.m.r. (90 MHz, D₂O): δ 1.27 (3 H, J 7 Hz, C-Me), 3.42 (3 H, OMe), 4.47 (d, 1 H, J 8 Hz, β -L-fucopyranosyl H), 5.00 (d, 1 H, J 3 Hz, α -D-galactopyranosyl H), and no peak > 5.00. On recrystallization of this solid from ethanol, the n.m.r. spectrum remained unchanged, m.p. 226–228°, $[\alpha]_D^{25} + 114.7^\circ$ (c 0.75, water).

Anal. Calc. for C₁₃H₂₄O₁₀: C, 45.88; H, 7.11. Found: C, 46.02; H, 7.16.

(b). From methyl 6-O-benzoyl-3,4-O-isopropylidene- α -D-galactopyranoside¹³ (9). — Reaction of 9 (0.60 g) with 2, followed by catalytic deacylation and catalytic removal of the isopropylidene group, gave a syrup (0.50 g, 81%), $[\alpha]_D^{25} + 103^{\circ}$ (c 1.0, water); the p.m.r. spectrum did not show a peak at δ 5.09 corresponding to α -L-fucopyranosyl H, but a doublet at 4.47 (J 8 Hz) was present; on crystallization from ethanol (yield 0.45 g); m.p. 225–227°, $[\alpha]_D^{25} + 112.5^{\circ}$ (c 0.70, water).

Methyl 2-O-(2-O-benzyl- α -L-fucopyranosyl)- α -D-galactopyranoside (27). — Reaction of 9, (0.50 g) with 3, followed by catalytic deacylation, removal of the isopropylidene group, and column chromatography, gave a solid product (0.50 g, 79% overall), $[\alpha]_D^{25}$ —2.1° (c 1.90, water); a portion was recrystallized from ethanol, m.p. 193–195°, $[\alpha]_D^{25}$ —1.0° (c 0.4, water).

Anal. Calc. for C₂₀H₃₀O₁₀: C, 55.80; H, 7.03. Found: C, 55.61; H, 7.15.

Hydrogenolysis of a portion of 27 afforded a product that was identical with 26 (m.p., t.l.c., optical rotation, and p.m.r. spectrum).

Methyl 2-O- α - and - β -L-fucopyranosyl- β -D-galactopyranoside. — Reaction of methyl 6-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranoside ¹³ (10) with 2, followed by catalytic deacylation and removal of the isopropylidene group, led to a syrup

(1.0 g, 90%), $[\alpha]_D^{25}$ —44.5° (c 0.67, water); n.m.r. (90 MHz, Me₂SO): δ .5.04 (0.4 H, α -disaccharide); on crystallization from 95% ethanol, a crystalline solid was obtained (0.367 g), m.p. 218–220°, $[\alpha]_D^{25}$ + 11.5° (c 1.04, water); n.m.r. (90 MHz Me₂SO): no peak $> \delta$ 4.60; g.l.c. of the per(trimethylsilyl)ether; $T_{sucrose}$ 1.22.

Anal. Calc. for C₁₃H₂₄O₁₀: C, 45.88; H, 7.11. Found: C, 45.98; H. 7.29.

To this compound was attributed the structure methyl 2-O- β -L-fucopyranosyl- β -D-galactopyranoside (31). On evaporation the mother liquor, gave an amorphous product (0.616 g, 55%), $[\alpha]_D^{25}$ —61.6° (c 1.68, water); g.l.c. of the per(trimethylsilyl) ether: $T_{sucrose}$ 1.30 and 1.22 (2:1). Thus, the syrupy reaction product contained ~40% of α -linked disaccharide.

Methyl 2-O-(2-O-benzyl-α-L-fucopyranosyl)-β-D-galactopyranoside (27). — Reaction of 10 (0.5 g) with 3, followed by deblocking, led to 27 (0.50 g, 79%), $[\alpha]^{25}$ —109° (c 1.06, water). A portion (0.40 g) was crystallized from ethanol (yield 0.32 β); m.p. 192–194°, $[\alpha]_D^{25}$ —118° (c 0.69, water); n.m.r. (90 MHz, Me₂SO): the expected doublet at δ 5.03 (J 3Hz) characteristic of α-L-fucopyranosyl H.

Anal. Calc. for $C_{20}H_{30}O_{10}$: C, 55.80; H, 7.03. Found: C, 56.02; H, 7.08.

Methyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside (28). — Catalytic hydrogenolysis of 27 afforded an amorphous solid, $[\alpha]_D^{25}$ —70.1° (c 0.88, water); g.l.c. of per(trimethylsilyl) ether: $T_{sucrose}$ 1.30.

REFERENCES

- 1 G. WULFF AND G. RÖHLE, Angew. Chem., Int. Ed. Engl., 13 (1974) 157-170.
- 2 B. HELFERICH AND J. ZIRNER, Chem. Ber., 95 (1962) 2604-2611.
- 3 J. Lehmann and D. Beck, Justus Liebigs Ann. Chem., 630 (1960) 56-58.
- 4 B. Koeppen, Carbohydr. Res., 7 (1968) 410-413.
- 5 R. J. FERRIER AND D. PRASAD, J. Chem. Soc., (1965) 7429-7432.
- 6 M. Dejter-Juszynski and H. M. Flowers, Carbohydr. Res., 37 (1974) 75-79.
- 7 M. CHACÓN-FUERTES AND M. MARTÍN-LOMAS, Carbohydr. Res., 43 (1975) 51-56.
- 8 H. M. FLOWERS, Methods Carbohydr. Chem., 6 (1972) 474-480.
- 9 E. S. RACHAMAN AND R. W. JEANLOZ, Carbohydr. Res., 10 (1969) 429-434.
- 10 E. S. RACHAMAN AND R. W. JEANLOZ, Carbohydr. Res., 10 (1969) 435-439.
- 11 H. M. FLOWERS, A. LEVY, AND N. SHARON, Carbohydr. Res., 4 (1967) 189-195.
- 12 A. LEVY, H. M. FLOWERS, AND N. SHARON, Carbohydr. Res., 4 (1967) 305-311.
- 13 H. M. FLOWERS, unpublished data.
- 14 M. L. WOLFROM, F. SHAFIZADEH, R. K. ARMSTRONG, AND T. M. SHEN HAN, J. Am. Chem. Soc., 81 (1953) 3716-3719.
- 15 D. J. BELL AND S. WILLIAMSON, J. Chem. Soc., (1938) 1196-1200.
- 16 E. E. PERCIVAL AND E. G. V. PERCIVAL, J. Chem. Soc., (1950) 690-691.
- 17 O. T. SCHMIDT, W. MAYER, AND A. DISTELMAIER, Justus Liebigs Ann. Chem., 555 (1943) 26-41.
- 18 P. P. SINGH AND G. A. ADAMS, Carbohydr. Res., 13 (1970) 229-234.
- 19 M. DEJTER-JUSZYNSKI AND H. M. FLOWERS, Carbohydr. Res., 23 (1972) 41-45.
- 20 M. Dejter-Juszynski and H. M. Flowers, Carbohydr. Res., 28 (1973) 61-74.
- 21 R. U. LEMIEUX, K. B. HENDRICKS, R. V. STICK, AND K. JAMES, J. Am. Chem. Soc., 27 (1975) 4056–4062.
- 22 H. M. FLOWERS, Carbohydr. Res., 18 (1971) 211-218.